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Abstract
The magnetic susceptibility of the one-dimensional Hubbard model with open
boundary conditions at arbitrary filling is obtained from field theory at low
temperatures and small magnetic fields, including leading and next-leading
orders. Logarithmic contributions to the bulk part are identified as well
as algebraic–logarithmic divergences in the boundary contribution. As a
manifestation of spin–charge separation, the result for the boundary part at
low energies turns out to be independent of filling and interaction strength and
identical to the result for the Heisenberg model. For the bulk part at zero
temperature, the scale in the logarithms is determined exactly from the Bethe
ansatz. At finite temperature, the susceptibility profile as well as the Friedel
oscillations in the magnetization are obtained numerically from the density-
matrix renormalization group applied to transfer matrices. Agreement is found
with an exact asymptotic expansion of the relevant correlation function.

PACS numbers: 71.10.Fd, 71.10.Pm, 02.30.Ik

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The one-dimensional Hubbard model plays a central role in the understanding of interacting
electrons in one dimension. The Hamiltonian,

H = −
L−1∑
j=1

∑
a=↑,↓

(
c
†
j,acj+1,a + c

†
j+1,acj,a

)
+ 4u

L∑
j=1

nj,↑nj,↓ − h

2

L∑
j=1

(nj,↑ − nj,↓), (1)

arises naturally in the tight-binding approximation of electrons on a chain with L sites. In (1),
the magnetic field h couples to the z-component of the total spin. The interaction parameter
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u = U/|t | > 0 is the ratio between the on-site Coulomb repulsion U and the hopping amplitude
t. Note that the eigenvalues of H are invariant under a sign change t → −t [1]. Furthermore, H
is invariant under reversal of all spins and under a particle–hole transformation (the so-called
Shiba transformation) [1]. Therefore we restrict ourselves here to positive magnetization and
lattice filling less than or equal to 1.

The appealing simplicity of the Hamiltonian, combined with its Bethe ansatz (BA)
solvability and its adequateness for field-theoretical studies are the reasons for its wide
popularity.

Recent experimental achievements in two areas additionally motivate our studies: on the
one hand, the fabrication and characterization of carbon nanotubes have shown that these
can be considered as realizations of one-dimensional Hubbard models [2]. Especially, kinks
in these quantum wires have been realized experimentally [3, 4]. A kink locally weakens
the hopping amplitude at one specific lattice site in the Hamiltonian. Such a modification is
known to be a relevant perturbation, which, at u > 0, is governed by a fixed point with zero
conductance through the kink [5]. Thus at low energies the chain is effectively cut into two
pieces.

On the other hand, ultracold fermionic atoms in optical lattices can be described by a
one-band Hubbard model [6]. Given the recent progress in realizing quasi one-dimensional
bosonic quantum gases [7], it is likely that similar experimental progress will be made with
fermions.

In order to model these situations, we consider open boundary conditions in (1). Compared
to the case with periodic boundary conditions, an additional surface contribution fB to the free
energy occurs, defined as

fB = lim
L→∞

(Fobc − Fpbc), (2)

where Fobc (Fpbc) is the total free energy for open (periodic) boundary conditions. In this
work, we will focus on the magnetic susceptibility per lattice site χ = χbulk + χB/L both at
T = 0, h � 0 and T � 0, h = 0, at arbitrary fillings.

For half-filling, the bulk contribution χbulk at T = h = 0 has first been given by Takahashi
[8], where the existence of logarithmic contributions at finite h is also mentioned. Later on,
Shiba [9] calculated χbulk at T = h = 0 for general filling. The free energy at finite
temperatures was given by Takahashi (for an overview and original literature, cf the book
[10]), and later by Klümper (the book [11] contains a detailed account of this work). However,
it seems as if the explicit behaviour of χbulk at T = 0, h � 0 and T � 0, h = 0 has not been
derived so far. In this work, this gap will be filled.

Although the boundary quantity χB is only an O(1)-correction to the total bulk
contribution, it may become important in experiments if it shows a divergence with respect
to the temperature T or magnetic field h. Indeed, such divergences have been discovered
and analysed in the tJ-chain [12] spin-1/2 Heisenberg chain [13–17]. Since the isotropic
spin-1/2 Heisenberg chain is obtained from (1) in the limit u → ∞, related divergences are
also expected to occur in (1). In the case of half-filling for T = 0, it has been shown in [15,
18] that the boundary magnetic susceptibility is divergent, χB ∼ 1/(h ln2 h), for h → 0. In
addition, due to the OBCs translational invariance is broken. Therefore quantities such as
the magnetization or the density become position dependent. Local measurements of such
quantities then provide a way to obtain information about the impurity making theoretical
predictions about the behaviour of such one-point correlation functions desirable.

In section 2 we give the functional forms of both the bulk and the boundary contributions
by using a field-theoretical argument. Leading and next-leading logarithmic contributions
to the finite bulk susceptibility are found both at finite T and finite h. On the other hand,
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the boundary contribution diverges in a Curie-like way with logarithmic terms, where again
we give both the leading and next-leading divergences. These results depend each on two
constants, which are the spin velocity and the scale involved in the logarithms. At magnetic
fields or temperatures much smaller than this scale the result for the boundary susceptibility
becomes independent of the spin velocity and the scale and therefore completely universal.
This is a manifestation of spin–charge separation as will become clear in the next section.
For the bulk susceptibility, on the other hand, only the functional dependence on field or
temperature will be universal for low energies. The value at zero field and zero temperature,
however, is a non-universal constant which does depend on filling and interaction strength via
the spin velocity.

The spin velocity has been determined previously from the Bethe ansatz solution [9]. In
section 3, for T = 0, the scale in the logarithms will be determined exactly as well. The
calculation of boundary effects at T > 0 based on the Bethe ansatz solution still remains
an open problem, as for all Yang–Baxter integrable models (reasons for that are given in
[16, 19] for the special case of the spin-1/2 XXZ chain). In section 4 we therefore calculate
the susceptibility profile χ(x, T ) and magnetization profile s(x, T ) in the asymptotic low-
energy limit (that is, for large distances and small temperatures) by making use of conformal
invariance. Due to the open boundaries, s(x, T ) shows the characteristic Friedel oscillations
[20–22]. To test the field-theory predictions, we perform numerical calculations in the
framework of the density matrix renormalization group applied to transfer matrices, which
is particularly suited for impurity and open-boundary models. In the final section, we will
present our conclusions and discuss in which experimental situations the calculated boundary
effects might become important.

2. The low-energy effective Hamiltonian

First, we briefly review the effective field theory for the Hubbard model following in large
parts [11, 23]. From the effective Hamiltonian we then obtain the magnetic susceptibility at
small magnetic field and low temperature.

Let a be the lattice spacing. We introduce fermionic fields ψ(x) in the continuum by

cjσ → √
aψ(x) = √

a(eikFσ xRσ (x) + e−ikFσ xLσ (x)) (3)

where x = j · a and the usual splitting into left- and right-moving parts has been
performed. The Fermi momentum depends on both the density n and the magnetization s as
kF↑ = π(n+2s)/(2a), kF↓ = π(n−2s)/(2a) (the magnetization is defined as s = (m↑−m↓)/2,
with mσ = Mσ/L being the density of particles with spin σ ). In the following, we will
consider the zero-field case where kF↑ = kF↓ = πn/(2a). Equation (3) allows it to introduce
a Hamiltonian density H(x), such that H = ∫

H dx. In terms of the right- and left-movers
in (3) the kinetic part of the Hamiltonian (1) in a lowest order expansion in a becomes

H0 = −ivF

∑
σ

(
R†

σ ∂xRσ − L†
σ ∂xLσ

)
(4)

and the interaction part

Hint = 4ua
{
:
(
R

†
↑R↑ + L

†
↑L↑

)(
R

†
↓R↓ + L

†
↓L↓

)
: − : R

†
↑R↓L

†
↓L↑ : − : R

†
↓R↑L

†
↑L↓:

− (
e4ikF xL

†
↑L

†
↓R↑R↓ + h.c.

)}
. (5)

Here ‘:’ denotes normal ordering. For brevity, the x-dependence of the operators has been
dropped. The Fermi velocity is given by vF := 2a sin(kFa). The second term in (5) represents
backward scattering processes whereas the last term is due to Umklapp scattering. Only in the
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half-filled case, where kF = π/(2a), is the Umklapp term non-oscillating and has to be kept
in the low-energy effective theory. For all other fillings it can be dropped.

To make the Hamiltonian manifestly SU(2) invariant under spin-rotations one can also
express H in terms of the following currents [11, 24, 25]:

J =
∑

σ

: R†
σRσ :, J =

∑
σ

: L†
σLσ :,

J a = 1

2

∑
α,β

: R†
ασ a

αβRβ :, J
a = 1

2

∑
α,β

: L†
ασ a

αβLβ : .

The free part (4) then reads

H0 = vF

[
π

2
(: J 2 : + : J

2
:) +

2π

3
(: J · J : + : J · J :)

]
. (6)

As far as the interaction part (5) is concerned, we first consider the case n �= 1, that is
away from half-filling. Then Umklapp scattering can be ignored leading to

Hint = gc[: J 2 : + : J
2

:] + gs[: J · J : + : J · J :] + λc : JJ : +λ : J · J : (7)

and coupling constants gc = ua, gs = −4ua/3, λc = 2ua and λ = −8ua.
Taking equations (6) and (7) together, we see that the Hamiltonian is a sum of two terms:

one depending on the scalar currents J, J only (corresponding to charge excitations) and the
second depending on the vector currents J, J (associated with spin excitations).

Hc =
(πvF

2
+ gc

)
: [J 2 + J

2
] : +λc : JJ :, (8)

Hs =
(

2πvF

3
+ gs

)
: [J · J + J · J] : +λ : J · J : . (9)

The charge and spin parts commute, [Hc,Hs] = 0.
Let us first focus on Hc. The term with coefficient gc gives rise to a renormalization of

vF, yielding the charge velocity

vc = vF + 2ua/π. (10)

Upon bosonizing, the charge currents are written as [23]

J = − 1√
4π

(	 + ∂xϕ), J = 1√
4π

(	 − ∂xϕ)

where the boson field ϕ and the corresponding momentum 	 satisfy the canonical commutation
relation [ϕ(x),	(x ′)] = iδ(x − x ′). Then

Hc = vc

4

[
	2

(
1 − λc

πvc

)
+ (∂xϕ)2

(
1 +

λc

πvc

)]
. (11)

By scaling ϕ′ = ϕ
√

Kc, 	′ = 	/
√

Kc,

Kc = 1 − λc

πvc
≈ 1 − 2ua

πvF
, (12)

this Hamiltonian is written as Hc = vc
4 [	′2 + (∂xϕ

′)2], which describes noninteracting fields.
Note that in this field-theoretical approach the Luttinger parameter Kc is calculated only up to
the linear order in u. The same is true for vc,s. Contributions in higher u-order would occur if
the perturbational approach is pursued further. Fortunately, the Bethe ansatz solvability of the
model allows it to calculate vc,s,Kc exactly [11]. We will come back to this point in the next
section.
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In Hs, the gs-term leads to a renormalization of the spin velocity

vs = vF − 2ua/π. (13)

The remaining interaction of vector currents is a marginal perturbation. By setting up the
corresponding renormalization group equations, it turns out that it is marginally irrelevant
(relevant) for sgn(λ) < 0 (sgn(λ) > 0) [23, 26]. In our case, λ = −8ua < 0. The remarkable
point about this is that the spin part of the low-energy effective Hubbard model is identical
to the corresponding expression for the XXX-Heisenberg chain [27, 28], whereas the charge
part is described by free bosons (away from half-filling). For this case, field theory has been
employed [26–28] to obtain the bulk contribution to the magnetic susceptibility in the form

χbulk(E) = χ0

(
1 +

1

2 ln E0/E
− ln ln E0/E

4 ln2 E0/E
+

γE

ln2 E0/E
+ · · ·

)
(14)

χ0 = 1

2πvs
, (15)

where E = h, T (magnetic field or temperature), E0 = h0, T0 is some scale and χ0 := χ(T =
0, h = 0) is given by the inverse of the spin velocity. For the open XXX-chain, the boundary
contributions have been found to be [13, 14, 17]

χB(T ) = 1

12T ln T
(B)

0

/
T

(
1 − ln ln T

(B)
0

/
T

2 ln T
(B)

0

/
T

+
γ

(B)
T

ln T
(B)

0

/
T

+ · · ·
)

(16)

χB(h) = 1

4h ln2 h
(B)
0

/
h

(
1 − ln ln h

(B)
0

/
h

ln
(
h

(B)
0

/
h
) +

γ
(B)
h

ln h
(B)
0

/
h

+ · · ·
)

. (17)

From the above considerations we conclude that the bulk and boundary contributions to the
magnetic susceptibility in the Hubbard model are also of the form (14)–(17), where, compared
to the XXX-model, χ0, T0, h0, γT,h, γ

(B)
T ,h are renormalized by the charge part.

Most interestingly, the pre-factor of χB remains unaffected by the charge channel. The
divergent boundary contribution for T 
 T

(B)
0 or h 
 h

(B)
0 is therefore completely universal

χB
(
T 
 T

(B)
0

) = − 1

12T ln T

(
1 +

ln|ln T |
2 ln T

)
(18)

χB
(
h 
 h

(B)
0

) = 1

4h ln2 h

(
1 +

ln|ln h|
ln h

)
. (19)

This can be understood as follows: as the charge- and spin-part of the Hamiltonian separate
at low energies, the only way how the charge channel can affect the spin channel is by a
renormalization of vs and Ks. The Luttinger parameter Ks in the spin sector, however, is fixed
to Ks ≡ 1 due to the SU(2) symmetry and cannot renormalize. The explicit calculations of
the pre-factor of χB for the XXX-model in [13, 14, 17] show, on the other hand, that it does
not depend on the spin-velocity vs. It therefore remains completely independent of the filling
factor and the interaction strength.

Let us now comment on the scales involved in equations (14), (16) and (17). Including
the order O(ln−2 E) in equation (14), this equation can be written as

χbulk(E) = χ0

(
1 − 1

2 ln E
− ln|ln E|

4 ln2 E
+

γE − (ln E0)/2

ln2 E
+ · · ·

)
. (20)
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It is convenient to define a new scale E0 = Ẽ0 e2γE . Then, again up to the order O(ln−2 E),
we have

χbulk(E) = χ0

(
1 +

1

2 ln Ẽ0/E
− ln ln Ẽ0/E

4 ln2 Ẽ0/E
+ · · ·

)
,

where the term ∼ln−2E has been absorbed in the term ∼ln−1E by the redefinition of the scale.
This procedure fixes the scale uniquely [26].

One proceeds analogously with equations (16) and (17) and obtains

T
(B)

0 = T̃
(B)

0 eγ
(B)
T , h

(B)
0 = h̃

(B)
0 eγ

(B)
h (21)

χB(T ) = 1

12T ln T̃
(B)

0

/
T

(
1 − ln ln T̃

(B)
0

/
T

2 ln T̃
(B)

0

/
T

+ · · ·
)

(22)

χB(h) = 1

4h ln2 h̃
(B)
0

/
h

(
1 − ln ln h̃

(B)
0

/
h

ln h̃
(B)
0

/
h

+ · · ·
)

. (23)

Let us now turn to the half-filled case n = 1. The additional Umklapp term in (5) can also
be bosonized and is proportional to cos

√
8πϕ. When we now again rescale the field ϕ′ =

ϕ
√

Kc we obtain a relevant interaction ∼cos
√

8π/Kcϕ
′ for any finite u > 0 because Kc < 1 in

this case. This means that the charge sector will be massive. Indeed, at u → ∞, the excitations
of the Hubbard model at half-filling are exactly those of the XXX-chain [11]. Formulae
(14), (16) and (17) remain valid at half-filling as well. The leading term in equation (17),
including the constant h0, was given in [18]. There, a phenomenological argument was found
that generalizes this result to arbitrary filling. The constant h0 was left undetermined in the
arbitrary filling case.

3. Bethe ansatz

In the framework of the BA solution, the energy eigenvalues of (1) are given in terms of
certain quantum numbers, the Bethe roots. These roots have to be calculated from a set of
coupled algebraic equations. In the thermodynamic limit, these algebraic equations can be
transformed into linear integral equations for the densities of roots, with the energy being
given by an integral over these densities. In this section, the Bethe ansatz solution is first used
to verify the small-coupling expressions for vc, vs,Kc; cf equations (10), (12) and (13).

Afterwards, we obtain the magnetic susceptibility at T = 0. Therefore, we first analyse the
integral equations in the small-field limit, thereby determining the constants in equation (14)
(for T = 0). The pre-factor χ0 has been calculated by Shiba [9]. Our essential new results
are twofold: on the one hand, the leading h-dependence of the bulk-susceptibility is calculated
exactly at small fields, including the scale, for arbitrary fillings. On the other hand, the result
for the boundary susceptibility (17) is confirmed within the exact solution. However, due to
cumbersome calculations, the constant γ (B)

h in equation (17) is left undetermined here. Finally,
we consider some special cases and present numerical results.

In order to introduce our notation, we shortly state the main results of the BA solution.
For any further details, the reader is referred to [11], which also contains an extensive list of
the original literature. The BA solution for the one-dimensional Hubbard model with open
boundary conditions has been found by Schulz [29], based on the coordinate Bethe ansatz.
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The algebraic BA for this model has been performed in [30]. The BA equations read

e2ikj (L+1) =
M↓∏
l=1

λl − sin kj − iu

λl − sin kj + iu

λl + sin kj + iu

λl + sin kj − iu
, j = 1, . . . , N (24)

N∏
j=1

λl − sin kj − iu

λl − sin kj + iu

λl + sin kj − iu

λl + sin kj + iu
=

M↓∏
m=1,m�=l

λl − λm − 2iu

λl − λm + 2iu

λl + λm − 2iu

λl + λm + 2iu
,

l = 1, . . . ,M↓, (25)

and the energy is given by

E = −2
N∑

j=1

cos kj . (26)

Here, we analyse the ground state, where the N-many kj s and the M↓-many λls lie on one
half of the real axis, except the origin. Although k = 0, λ = 0 are solutions of the
system (24) and (25), they must not be counted in (26): these solutions correspond to
zero-momentum excitations, which have to be excluded due to the broken translational
invariance in the open system3. However, one can show that if kj , λl solve (24) and (25),
then the same is true for −kj ,−λl . One then ‘symmetrizes’ equations (24) and (25) by
setting up those equations for the sets {p1, . . . , p2N+1} := {−kN, . . . ,−k1, 0, k1, . . . , kN } and{
v1, . . . , v2M↓+1

}
:= {−λM↓ , . . . ,−λ1, 0, λ1, . . . , λM↓

}
:4

e2ipj (L+1) sin pj + iu

sin pj − iu
=

2M↓+1∏
l=1

vl − sin pj − iu

vl − sin pj + iu
, j = 1, . . . , 2N + 1 (27)

vl + 2iu

vl − 2iu

2N+1∏
j=1

vl − sin pj + iu

vl − sin pj − iu
=

2M↓+1∏
m=1,m�=l

vl − vm + 2iu

vl − vm − 2iu
, l = 1, . . . , 2M↓ + 1. (28)

These equations can be solved analytically in the small coupling limit; cf appendix A.
However, this solution has to be treated with care. It has been shown in [31] that a small-
coupling expansion of the ground-state energy in the thermodynamic limit has zero radius
of convergence. This does not come as a surprise when considering again the low-energy
effective theory presented in section 2: at u = 0 the interaction of vector currents in equation (9)
changes from marginally relevant to marginally irrelevant. Thus in the following we perform
the thermodynamic limit before considering any small-field or small-coupling approximations
and compare with the results of appendix A afterwards.

In the thermodynamic limit, one can set up equations equivalent to (27) and (28), by
introducing the density of ps, ρ(k), and the density of λs, σ(v). These densities are solutions
to the following set of coupled linear integral equations [15, 29]

ρ(k) = 1

π
+

1

L

(
1

π
− cos k a1(sin k)

)
+ cos k

∫ B

−B

a1(sin k − v)σ (v) dv (29)

σ(v) = 1

L
a2(v) +

∫ Q

−Q

a1(v − sin k)ρ(k) dk −
∫ B

−B

a2(v − w)σ(w) dw, (30)

3 The wavefunction constructed from the coordinate BA [29] would vanish identically for k = 0, λ = 0.
4 k = 0, λ = 0 are included here to introduce homogeneous densities of roots. Their contribution is then subtracted
later on; see equations (32) and (33).
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where

an(x) = nu/(π(n2u2 + x2)). (31)

The integration boundaries are determined from the particle density n and the density of
particles with spin down m↓,

n = 1

2

∫ Q

−Q

ρ(k) dk − 1

2L
, m↓ = 1

2

∫ B

−B

σ(v) dv − 1

2L
. (32)

Once these equations are solved, the energy density e is obtained from

e = −
∫ Q

−Q

cos kρ(k) dk +
1

L
. (33)

3.1. Velocities and Luttinger parameter

Before proceeding further, we first make contact with the field-theoretical results (10), (12)
and (13) in the previous section. Since these concern only bulk-quantities, we discard the
1/L-corrections in this subsection. We also set the lattice parameter a ≡ 1 here.

Furthermore, the results (10), (12) and (13) have been obtained for densities n �= 1 (such
that both the charge and spin channels are massless). Analogously, we restrict ourselves here
to densities away from half-filling. Within the BA, charge- and spin-velocities are calculated
as

vc,s = ∂εc,s

∂pc,s
= ∂λεc,s(λ)

∂λpc,s(λ)

∣∣∣∣
λ=B,Q

= 1

π

∂λεc,s(λ)

(ρ, σ )

∣∣∣∣
λ=B,Q

(34)

where εc,s is the energy of the lowest possible (i.e. at the Fermi surface) elementary charge/spin
excitation and pc,s the corresponding momentum. After the second equality sign, these
quantities are parametrized by the spectral parameter λ = k, v. Then pc,s is expressed by
the densities ρ, σ . The derivatives of the elementary excitations with respect to the spectral
parameter are given by (ε′

c(k) = ∂kεc(k), ε′
s(v) = ∂vεs(v))

ε′
c(k) = 2 sin k + cos k

∫ B

−B

a1(sin k − v)ε′
s(v) dv (35)

ε′
s(v) =

∫ Q

−Q

a1(v − sin k)ε′
c(k) dk −

∫ B

−B

a2(v − w)ε′
s(w) dw. (36)

Furthermore, from Hc in equation (11) it follows that the Luttinger liquid parameter Kc is
obtained from the charge susceptibility χc at zero field,

χc = 2Kc

πvc
. (37)

The susceptibility χc = ∂µn in turn can be expressed by ε′(k)|k=B, ρ(B) and a related function
[32]. Although the analytical solution of the integral equations in the limit u → 0 is difficult
to obtain due to singular integration kernels, these equations can be solved numerically to
high accuracy. Figures 1 and 2 show the velocities and the Luttinger parameter at different
fillings as a function of u, together with the analytical predictions (10), (12) and (13) for
small u. Agreement is found in all cases.

Once vs is calculated, χ0 is also known by virtue of equation (15). In the next section we
describe how to obtain the h-dependent corrections.
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0 1 2 3 4 5
u

0

0.5

1

1.5

2

v c,
s(u

)

Figure 1. Spin- (black point-dashed lines) and charge- (black full lines) velocities at fillings
n = 1/4, 1/2, 3/4 (pairs from bottom to top). The dashed lines on the left are the low-u
results equations (10) and (13). The horizontal bars on the right indicate the limiting value
vc|u→∞ = 2 sin(πn) [33]. Note that this asymptotic value is the same for both n = 1/4, 3/4. By
comparing vc|u=0 = vF = 2 sin(πn/2) with vc|u→∞, one concludes that vc(u) is maximal at a
finite u for 2/3 < n < 1.

0 0.1 0.2 0.3 0.4 0.5
u 
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K
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Figure 2. Luttinger parameter Kc at fillings n = 1/4, 1/2, 3/4. The blue dashed lines are the
low-u results equation (12).

3.2. Spin susceptibility

An analytical solution of equations (29) and (30) is a challenging task due to the finite
integration boundaries Q,B. To gain a first insight, consider the integral of equation (30) over
the whole real axis, yielding

∫ ∞
−∞ σ(v) dv = 2(n−m↓)+ 1/L and therefore the magnetization

s := n

2
− m↓ = 1

2

∫ ∞

B

σ(v) dv. (38)
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Our aim is to perform a low-field expansion, i.e. an expansion around s = 0. From
equation (38), this corresponds to an asymptotic expansion of σ(v > B � 0). This expansion
is done by generalizing Shiba’s approach [9], who calculated χ0 for pbc in a different way
than via the spin velocity.

Substitute equation (29) into equation (30) to obtain

σ(v) = 1

L

(
g

(0)
Q (v) + SQ(v, 0)

)
+ g

(0)
Q (v) −

∫ B

−B

SQ(v, v′)σ (v′) dv′

SQ(v, v′) := a2(v − v′) −
∫ Q

−Q

a1(v − sin k)a1(sin k − v′) cos k dk.

(39)

Here g
(0)
Q is the ν = 0-case of g

(ν)
Q , defined by

g
(ν)
Q (v) :=

∫ Q

−Q

1

π
a1(v − sin k) cosν k dk. (40)

Furthermore,

σ (ν)(v) := 1

L

(
g

(ν)
Q (v) + SQ(v, 0)

)
+ g

(ν)
Q (v) −

∫ ∞

−∞
SQ(v, v′)σ (ν)(v′) dv′. (41)

Equation (41) can be solved for σ (ν), at the expense of introducing a new unknown function
MQ(v, v′):

MQ(v, v′) = SQ(v, v′) −
∫ ∞

−∞
SQ(v, v′′)MQ(v′′, v′) dv′′ (42)

σ (ν)(v) = 1

L

(
g

(ν)
Q (v) + SQ(v, 0)

)
+ g

(ν)
Q (v)

−
∫ ∞

−∞
MQ(v, v′)

[
1

L

(
g

(ν)
Q (v′) + SQ(v′, 0)

)
+ g

(ν)
Q (v′)

]
dv′. (43)

We consider now
∫ ∞
−∞ MQ(v, v′)σ (v′) dv′, where σ(v′) is given by the rhs of equation (39).

Making use of equation (43) with ν = 0, one obtains

σ(v) = σ (0)(v) +
∫

|v′|>B

MQ(v, v′)σ (v′) dv′. (44)

Similarly, starting from
∫ B

−B
σ(v)σ (ν)(v) dv (where σ (ν)(v) is given by equation (41), one gets∫

|v|>B

σ(v)σ (ν)(v) dv =
∫ ∞

−∞

[
g

(0)
Q (v) +

1

L

(
g

(0)
Q (v) + SQ(v, 0)

)]
σ (ν)(v) dv

−
∫ B

−B

{
1

L

[
g

(0)
Q (v) + SQ(v, 0)

]
+ g

(ν)
Q (v)

}
σ(v) dv. (45)

Let us now express the energy and the particle density in terms of these functions. By use of
definition (40), and recalling equations (32) and (33), one arrives at

e − e0 = −π

∫ B

−B

g
(2)
Q (v)σ (v) dv + π

∫ ∞

−∞
g

(2)
Q (v)σ (0)(v) dv (46)

n − n0 = π

2

∫ B

−B

g
(1)
Q (v)σ (v) dv − π

2

∫ ∞

−∞
g

(1)
Q (v)σ (0)(v) dv, (47)

where e0, n0 are the energy and particle densities at B = ∞, i.e. zero magnetic field. Note
that e, n are functions of both Q,B. First, we hold Q fixed so that both e and n change with
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varying B. At the end, we will account for the change in n and calculate the susceptibility at
fixed n.

Let us now distinguish between the bulk and boundary parts in the auxiliary function σ (ν)

(an index B denotes the boundary contribution and should not be confused with the integration
boundary B),

σ (ν) =: σ
(ν)
bulk +

1

L
σ

(ν)
B . (48)

Then with the help of equation (41) the second term in equation (46) is written as∫ ∞

−∞
g

(2)
Q (v)σ (0)(v) dv =

∫ ∞

−∞

[
g

(0)
Q (v)

(
1 +

1

L

)
+

1

L
SQ(v, 0)

]
σ

(2)
bulk(v) dv. (49)

The first term in equation (46) is reformulated with the aid of equation (45). Analogous
calculations are done for equation (47). Putting everything together allows us to write

e − e0 = π

∫
|v|>B

σ(v)σ (2)(v) dv − π

L

∫
|v|>B

[
g

(2)
Q (v) + SQ(v, 0)

]
σbulk(v) dv (50)

n − n0 = −π

2

∫
|v|>B

σ(v)σ (1)(v) dv +
π

2L

∫
|v|>B

[
g

(1)
Q (v) + SQ(v, 0)

]
σbulk(v) dv. (51)

We thus have to evaluate σ(v), σ (1,2)(v) asymptotically. From equation (41),

σ (ν)(v) = d
(ν)
Q (v) +

∫ ∞

−∞

∫ Q

−Q

a1(sin k − v′) cos k

4u cosh π
2u

(v − sin k)
σ (ν)(v′) dk dv′

d
(ν)
Q (v) :=

(
1 +

1

L

)
1

π

∫ Q

−Q

cosν k

4u cosh π
2u

(v − sin k)
dk

+
1

L

(
κ(1)(v) −

∫ Q

−Q

a1(sin k) cos k

4u cosh π
2u

(v − sin k)
dk

)
. (52)

Here the integration kernel

κ(µ)(p) = 1

2π

∫ ∞

−∞

e−µu|ω|

2 cosh ωu
eiωp dω

has been defined. Equation (52) can be solved for σ (ν), at the expense of introducing an
unknown function LQ(t, t ′),

LQ(t, t ′) = δ(t − t ′) +
∫ sin Q

− sin Q

κ(t − t ′′)LQ(t ′′, t ′) dt ′′

σ (ν)(v) = d
(ν)
Q (v) +

∫ sin Q

− sin Q

dt

∫ sin Q

− sin Q

dt ′
LQ(t, t ′)

4πu cosh π
2u

(v − t)

×
[(

1 +
1

L

)∫ Q

−Q

cosν pκ(1)(sin p − t ′) dp

− π

L

∫ Q

−Q

a1(sin p) cos pκ(1)(sin p − t ′) dp +
π

L
κ(2)(t ′)

]
. (53)

From expression (53), the v → ∞ asymptotic behaviour of σ (ν)(v) can be read off, namely:

σ (ν)(v)
|v|→∞∼ 1

u
e− π

2u
|v|I (ν)

Q +
1

L
κ(1)(v), (54)
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with an algebraic decay κ(1)(|v| → ∞) ∼ 1/(4v2). The quantity I
(ν)
Q is defined as

I
(ν)
Q =

(
1 +

1

L

)∫ Q

−Q

cosνk

2π
e

π
2u

sin k dk − 1

2L

∫ Q

−Q

a1(k) cos k e
π
2u

sin k dk

+
∫ sin Q

− sin Q

dt

∫ sin Q

− sin Q

dt ′

2π
e

π
2u

tLQ(t, t ′)
[(

1 +
1

L

)∫ Q

−Q

cosνpκ(1)(sin p − t ′) dp

− 1

L

∫ Q

−Q

πa1(sin p) cos pκ(1)(sin p − t ′) dp +
π

L
2πκ(2)(t ′)

]
. (55)

For later purposes, let us also separate this function into bulk and boundary parts,

I
(ν)
Q = I

(ν)
Q,bulk +

1

L
I

(ν)
Q,B.

From equation (44), we now calculate σ(v) in the asymptotic limit. Therefore it is helpful
first to reformulate equation (44) by writing

MQ(v, v′) = κ(1)(v − v′) −
∫ Q

−Q

a1(sin k − v′) cos k

4u cosh π
2u

(v − sin k)
dk +

∫ sin Q

−sin Q

dt

×
∫ sin Q

−sin Q

dt ′
1

8πu cosh π
2u

(v − t)
LQ(t, t ′)

∫ Q

−Q

cosνpκ(1)(sin p − t ′) dp.

From this we conclude

MQ(v + B, v′ + B) + MQ(v + B,−v′ − B) ≈ κ(1)(v − v′) + κ(1)(v + v′ + 2B). (56)

Therefore the equation

σ(v + B) = σ (0)(v + B) +
∫ ∞

0
[MQ(v + B, v′ + B) + MQ(v + B,−v′ − B)]σ(v′ + B) dv′

(57)

can be approximated by

σ(v + B)
B→∞∼ 1

u
e− π

2u
(v+B)I

(0)
Q +

1

L
κ(1)(v + B)

+
∫ ∞

0
[κ(1)(v − v′) + κ(1)(v + v′ + 2B)]σ(v′ + B) dv′

=:
1

u
e− π

2u
(v+B)I

(0)
Q P1(v + B) +

1

L

1

2u
P2(v + B) (58)

P1(v) =: e− π
2u

v +
∫ ∞

0
[κ(1)(v − v′) + κ(1)(v + v′ + 2B)]P1(v

′) dv′ (59)

P2(v) =: 2uκ(1)(v) +
∫ ∞

0
[κ(1)(v − v′) + κ(1)(v + v′ + 2B)]P2(v

′) dv′. (60)

Let us estimate the error involved in the above approximations. We will see later that B ∼ −ln h

for small magnetic fields h. Corrections to the first term in equation (54) are higher order
exponentials and thus would add terms ∼h2n to the susceptibility (the term taken into account
here yields a constant contribution ∼h0). In the second term, higher order algebraic terms
have been dropped. These would contribute in order ∼1/(h lnn h), n > 3, to the boundary
susceptibility. The expected result (17) shows that all these terms are negligible for our
purposes. The same holds for equation (57).

We continue and treat the bulk and boundary contributions separately.
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3.3. Bulk contribution

For the bulk, the quantities I
(ν)
Q,bulk (ν = 1, 2) and the function P1(v) have to be calculated.

The crucial observation is that equation (59), which determines P1, is well known in the
study of the spin-1/2 XXX-Heisenberg chain: exactly the same function determines the T = 0
susceptibility in that model; cf [10] and references therein. Equation (59) is solved iteratively
by the Wiener–Hopf method. The solution reads [17] in terms of the Fourier transform P̃(k)

of the function P(v) := P(2uv):

P̃(k) = G+(k) ×


β0

kB̃2
, k �= 0

β1

B̃
+ β2

ln B̃

B̃2
+

β3

B̃2
, k = 0

(61)

with B̃ := B/(2u) and

β0 = iG+(iπ)G2
−(0)

16π2
, β1 = G+(iπ)

4π2
,

β2 = −G+(iπ)

8π3
, β3 = G+(iπ)

8π3
(−ln π + 1).

The function G+(k) is given by

G+(k) =
√

2π
(−ik)−ik/(2π)

�(1/2 + ik/(2π))
e−iak a = − 1

2π
− ln(2π)

2π
.

Combining equations (50) and (51) with equations (54) and (58) yields the bulk magnetization
and energy in terms of the auxiliary function P(v):

e − e0 = 4π

u
e− π

u
BI

(0)
Q,bulkI

(2)
Q,bulk

∫ ∞

0
P(v) e−πv dv (62)

n − n0 = −2π

u
e− π

u
BI

(0)
Q,bulkI

(1)
Q,bulk

∫ ∞

0
P(v) e−πv dv. (63)

Furthermore, from equation (38),

s = e− πB
2u I

(0)
Q,bulk

∫ ∞

0
P(v) dv. (64)

We now successively substitute P(v) from (61) into (64), (62) and (63). From the substitution
of (61) into (64), one obtains

B̃ = − 1

π
ln

s

s0
(65)

s0 := I
(0)
Q,bulkG+(0)

G+(iπ)

π
. (66)

Thus e − e0 and n − n0 are obtained as functions of s:

e − e0 = bQ

(
s

s0

)2 (
1 +

b1

ln s/s0
+ b2

ln|ln s/s0|
ln2 s/s0

+
b3

ln2 s/s0

)
(67)
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n − n0 = cQ

(
s

s0

)2 (
1 +

b1

ln s/s0
+ b2

ln|ln s/s0|
ln2 s/s0

+
b3

ln2 s/s0

)
bQ := 4π

u
I

(0)
Q,bulkI

(2)
Q,bulk

G2
+(0)

2π
G2

+(iπ)

cQ := −2π

u
I

(0)
Q,bulkI

(1)
Q,bulk

G2
+(0)

2π
G2

+(iπ)

b1 := 2β1π/α; b2 := b1/2

b3 := G−(0)

4
− 2π2

α

(
β3 − β2

1

α

)
+ 2β2π

2 ln π

α

α := G+(iπ)G+(0)/π =
√

2

π e
.

(68)

The Q-dependence enters only through bQ, cQ. Since we want to calculate the susceptibility at
constant density, we have to adjust Q such that the density is not altered by the finite B-value.
This adjustment is done by setting Q = Q0 + �, where Q0 corresponds to B = ∞:

e = e0 + (∂Qe0)� + bQf (s/s0) n = n0 + (∂Qn0)� + cQf (s/s0),

and f (s/s0) contains the whole s-dependence of equations (67) and (68). From this it follows

� = − cQ

∂Qn0
f (s/s0) e = e0 +

[
bQ − ∂Qe0

∂Qn0
cQ

]
f (s/s0).

Now the magnetic field h = −∂se and the susceptibility χ−1 = ∂2
s e are calculated, where χ

is expressed as a function of h. This calculation is equivalent to considering B as a variational
parameter and requiring ∂B(e − hs) = 0, from which one obtains a relation B = B(h),
analogous to equation (65). This is then substituted into equation (64) to get s = s(h) and
therefrom χ = χ(h). This second approach has been chosen in [17]. We end up with

χbulk(h) = s0

h0

(
1 − 1

2 ln h/h0
− ln|ln h/h0|

4 ln2 h/h0
+

5

16 ln2 h/h0

)
(69)

h0 =
[
bQ − ∂Qe0

∂Qn0
cQ

]/
s0. (70)

The constant s0 is given in equation (66). Equation (69) is the key result of this section
for χbulk(h). Note that it is of the form (14) (with E = h there), with specified constants.
Especially, an alternative expression for vs has been obtained; cf equation (15):

h0

s0
= 2πvs. (71)

To complement our discussion of the bulk susceptibility, we are going to express h0 in terms
of the dressed energy functions (35) and (36) by combining equations (34) and (71). From
equations (34)–(36), it is not difficult to show that at zero magnetic field,

2πvs =
∫ Q

−Q
e

π
2u

sin kε′
c(k) dk∫ Q

−Q
e

π
2u

sin kρ(k) dk
. (72)
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An expression for I
(ν)
Q,bulk equivalent to equation (55) is as follows:

I
(ν)
Q,bulk =

∫ Q

−Q

cosνk

2π
ψ(k) dk (73)

ψ(k) = e
π
2u

sin k +
∫ Q

−Q

cos k′κ(1)(sin k − sin k′)ψ(k′) dk′. (74)

Thus, by comparing with (35) and (36) at h = 0,

I
(0)
Q,bulk = 2u

[
σ(v) e

π
2u

v
]
v→∞ =

∫ Q

−Q

e
π
2u

sin kε′
c(k) dk. (75)

We now insert equation (66) into equation (71), making use of equation (75). Then we obtain

h0 =
√

2

eπ

∫ Q

−Q

e
π
2u

sin kε′
c(k) dk, (76)

which is an expression equivalent to equation (70).

3.4. Boundary contribution

Let us go back to equations (54) and (58). The boundary contribution is calculated by plugging
these equations into equations (50) and (51). The resulting expression is lengthy and we do
not write it down here. We rather apply the approximation to neglect terms of the order

e−πB/(2u)/B2 ∼ s

ln2 s
∼ h

ln2 h

in the ground-state energy. These terms would yield a contribution ∼1/(h ln3h) to the
susceptibility; cf equation (17). Neglecting these terms means not fixing the scale h

(B)
0 in

(17) uniquely. However, the algebraic 1/h divergence in (17) dominates such terms. Then
the boundary contributions read

[e − e0]B = 2π

∫ ∞

0
σbulk(v + B)σ

(2)
bulk(v + B) dv (77)

[n − n0]B = −π

∫ ∞

0
σbulk(v + B)σ

(1)
bulk(v + B) dv (78)

sB = 1

4u

∫ ∞

0
P2(v) dv, (79)

where P2 is given by equation (60). Note that the only difference with respect to the bulk is
the different dependence of s on B; cf equation (79). Instead of sbulk ∼ exp[−πB/(2u)] we
now have sB ∼ 2u/B, which will, according to equation (65), cause a logarithmic divergence
in the magnetization: 1/B ∼ 1/ ln(h), yielding the divergence indicated in equation (17).
Terms neglected in (79) are ∼ exp[−B] ∼ h + 1/(ln h), and consequently they will yield a
contribution to the boundary susceptibility which is of the bulk form, equation (14). These
finite terms are negligible compared to the divergent terms given in (17). We thus have to
insert the expressions for σbulk(v), σ

(1,2)
bulk (v) from the previous section into equations (77) and

(78). The Fourier transform P̃2(k) of the function P2(v) := P(2uv) is given in [17], namely

P̃2(k) =
{
G+(0)(α1/B + α2(ln B)/B2) k = 0
iα1G+(k)/(kB2), k �= 0

α1 = 1√
2π

, α2 = −
√

2

4π2
.
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We now go through the same steps as in the previous subsection: calculate [e − e0]B,

[n − n0]B, sB as functions of the integration boundary B, and derive therefrom the boundary
susceptibility as a function of h. This results in

χB(h) = 1

4h ln2(h0/h)

(
1 − ln ln h0/h

ln(h0/h)

)
(80)

with the scale h0 given in equation (70).

3.5. Explicit expressions in special cases

We consider three special cases: half-filling for arbitrary coupling, as well as weak and strong
coupling for arbitrary filling.

At half-filling, Q = π, I
(1)
Q,bulk = 0 and

I
(2)
Q,bulk = 1

π

∫ π

0
sin2 k e

π
2u

sin k dk h0 = 2π

u

√
2π

e
I

(2)
Q,bulk. (81)

This expression coincides with that given by Asakawa et al [18]. For strong coupling,
Q = πn and

h0
u→∞→ n

u

√
2π3

e

[
1 − sin(2πn)

2πn

]
=: h0,2 (82)

χ0
u→∞→ u

π2

[
1 − sin(2πn)

2πn

]−1

. (83)

The latter result has also been obtained in [9]. It is interesting to note that

h0,2 =
√

2π3

e
hc,

where hc is the critical field above which the system is fully polarized, sbulk(h � hc) = n/2,
[11]. Thus in the strong coupling limit, the logarithmic corrections are confined to fields
h 
 hc ∼ 1/u. In the special case n = 1 (half-filling), equations (82) and (83) are consistent
with known results for the XXX-chain with coupling constant J = 1/u: for this model,
χ

(XXX)
0 = 1/(Jπ2) [10], and the scale h

(XXX)
0 =

√
2π3/e, without taking account of the term

∼ln−2 h in (14) [17].
The small coupling limit is technically more involved: the integration kernels in the integral

equations become singular. A numerical evaluation of χ0(u) (see section 3.6) confirms the
field-theoretical prediction equation (A.15). As far as the scale h0 is concerned, it is clear
that it must diverge for u → 0: exactly at the free-fermion point u = 0, the logarithmic
corrections in equation (14) vanish altogether; corrections to χ0 at u = 0 are algebraic with
integer powers. The leading contributions ∼h2, T 2 for u = 0 are calculated in the appendix;
cf equations (B.1), (B.2), (B.5) and (B.6).

To describe the divergence of h0|u→0 quantitatively, consider first the half-filling case
where h0 ∼ econst/u. From the general expressions of I

(1,2)
Q,bulk (equation (55)), it is clear that this

is the case for arbitrary filling. Thus in the small-coupling limit, the finite-field susceptibility
is obtained from equation (14) with |ln h| 
 |ln h0|, i.e. h0 � h � 1/h0 ∼ exp[−1/u]:

χbulk(u → 0, h0 � h � 1/h0) = χ0

(
1 +

1

2 ln h0

)
+ O

(
ln h

ln2h0

)
. (84)



The one-dimensional Hubbard model with open ends 7203

0 0.5 1 1.5 2 2.5 3

u

0

0.2

0.4

0.6

0.8

1

1.2

1.4

χ bu
lk

(u
)

Numerical data
XXX-limit
Field theory0 5 10 15

u

0

0.5

1

1.5

2

χ bu
lk

(u
)

Figure 3. The susceptibility χbulk over u at densities n = 0.2, 0.3, 0.4, 0.5, 0.7, 1 (from top to
bottom at u = 0). A similar figure has been shown by Shiba [9]. Here, we additionally compare
with the field-theory result at small u (A.15) (blue dashed lines) and with the XXX-limit (for better
comparison the inset shows the same figure on a larger scale; the n = 1-line is printed bold here).

This has to be understood such that the limit u → 0 is considered at small but finite and fixed h.
Then the h-dependent terms are next-leading and can be neglected in a first approximation.
On the other hand, χbulk(u → 0, h > 0) has been calculated in appendix A (equation (A.14),

χbulk(u → 0, h > 0) = 1

2πvF
+

2u

π2v2
F

(85)

with the Fermi velocity vF = 2 sin(πn/2). Equations (84) and (85) match provided that

h0 = const exp
[ π

4u
vF

]
. (86)

We will confirm numerically this behaviour in section 3.6.

3.6. Numerical results

In order to compare the low-field expansion equations (69) and (80) to the outcome of the
non-approximated integral equations (29) and (30), we first compute χ0, h0 numerically. To
do so, we follow Shiba [9] and rewrite the quantities ∂Qe0, ∂Qn0 as solutions of linear integral
equations. Namely, from equations (33) and (32),

∂Qe0 = −4 cos Qρ(Q) − 2
∫ Q

−Q

cos k∂Qρ(k) dk

∂Qn0 = 2ρ(Q) +
∫ Q

−Q

∂Qρ(k) dk,

where ∂Qρ(k) is obtained from equations (29) and (30) at h = 0 (i.e. B = ∞):

∂Qρ(k) = cos k[κ(sin k − sin Q) + κ(sin k + sin Q)]ρ(Q)

+ cos k

∫ Q

−Q

κ(sin k − sin p)∂Qρ(p) dp.

These linear integral equations, together with equations (73) and (74), are solved numerically.
The result for χ0 as a function of u for different fillings is given in figure 3, together with
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Figure 4. The scale h0 over u for n = 0.2, 0.3, 0.4, 0.5, 0.7, 1.0 (from bottom to top). In (a, the
large-coupling result equation (82) is verified; in (b), the small-coupling formula equation (87) is
visualized (dashed lines).

the small-u expansion (A.15) and the XXX-limit. We checked numerically that this way of
obtaining χ0 is equivalent to calculating vs from equation (34) and then using equation (15).
The scale h0 as a function of u at different fillings is depicted in figure 4. Besides confirming
the small-coupling result equation (86), we observe that the numerical data are well described
by assuming the following form of the constant of proportionality in equation (86):

h0 =
[

4

π2

√
2π

e

]1/n

π
√

u e
π
2u

sin πn
2 . (87)

The exponent is exact (cf equation (86), the constant is conjectured from observing good
agreement with the numerics; cf figure 4. Having calculated h0, χ0, the next step consists
in finding χ(h) numerically and comparing with equations (69) and (80). The calculation
of χbulk(h) is described in [11, appendix to chapter 6]. The idea is to rewrite the energy in
terms of dressed energy functions (rather than in terms of dressed density functions like in
equations (29) and (30). The magnetic field enters the linear integral equations for the dressed
energy functions. Once these equations are solved, both the field and the magnetization are
determined. By varying slightly the integration boundaries while keeping the density fixed,
one performs a numerical derivative �s/�h to obtain χ . The results shown in the following
demonstrate that this procedure is highly accurate.

Figure 5 shows χbulk for densities n = 0.2, 1 at different couplings, together with the
analytical result (69). The boundary contribution χB(h) can be calculated similarly to χbulk(h)

as sketched above, because the equations are linear in the 1/L contribution. Results for
u = 1, 10 and densities n = 0.2, 1 are shown in figure 6.

4. Friedel oscillations

Due to the open boundary conditions, translational invariance is broken. This means that
one-point correlation functions such as the density or the magnetization will no longer be just
constants but rather become position dependent. In particular, they will show characteristic
oscillations near the boundaries, the so-called Friedel oscillations [22]. These oscillations
are expected to decay algebraically with distance x from the boundary, finally reaching the
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bottom to top). The dashed blue curves are the analytical result (69). The diamonds indicate χ0,
showing the decrease of the scale h0 with increasing u.
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Figure 6. The boundary susceptibility χB(h) for u = 1 in (a) and for u = 10 in (b) with n = 0.2, 1
(from top to bottom). The dots are the numerical data, the lines the asymptotic form (17) where
h

(B)
0 has been determined by a fit. The insets show χB · h · ln2 h, the red horizontal line denotes

the asymptotic value 1/4.

mean density or magnetization, respectively, for x → ∞. From a field-theoretical point of
view, such a one-point correlation function can be obtained from the holomorphic part of
the corresponding two-point function [34]. We therefore first recall here the asymptotics
of two-point functions in the Hubbard model according to [11, 35]. After that, we will
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derive the one-point correlation functions for the density n(x) and the magnetization sz(x).
This will then allow us to obtain the local susceptibility χ(x). By a conformal mapping,
we will generalize our results to small finite temperatures. As nuclear magnetic resonance
Knight shift experiments yield direct access to χ(x), the predictions obtained here about its
position, temperature as well as density dependence should be valuable for experiments on
one-dimensional itinerant electron systems. To test our conformal field theory results, we
present some numerical data based on the density-matrix renormalization group applied to
transfer matrices (TMRG).

4.1. Two-point functions

In the following, we content ourselves with stating the results for the asymptotics of pair-
correlation functions, without giving any derivations. For any further details, the reader is
referred to [11, 35]. We also restrict ourselves to the case n �= 1, i.e., we do not consider
half-filling. The reason to do so, is that at half-filling the charge sector is massive and the
correlation functions will be identical to those of the Heisenberg model up to the amplitudes
and the spin velocity which do depend on u. The local magnetization and susceptibility for
this case, however, have already been discussed in [16, 36].

The Hubbard model away from half-filling has two critical degrees of freedom with
different velocities and the low-energy effective theory outlined in section 2 is therefore not
Lorentz-invariant. As the spin and charge excitations are independent from each other we can,
however, still apply conformal field theory in this situation on the basis of a critical theory
which is a product of two Virasoro algebras both with central charge c = 1. Due to conformal
invariance, the exponents of the correlation functions of primary fields can then be obtained
from the finite-size corrections of low-lying excitation energies for the finite system. These in
turn can be calculated exactly via Bethe ansatz. Then the remaining challenge is to relate the
primary fields to the original fields of the model. This goal can be achieved by considering
the selection rules for the form factors involved and by using additional restrictions obtained
from the Bethe ansatz solution for the finite size spectrum [35].

In this situation, the correlation function of two primary fields at zero temperature is given
by (we include here the dependence on the imaginary time τ )

〈φ�±(τ, x)φ�±(0, 0)〉 = e2iDckF↑x e2i(Dc+Ds)kF↓x

(vcτ + ix)2�+
c (vcτ − ix)2�−

c (vsτ + ix)2�+
s (vcτ − ix)2�−

s

with the scaling dimensions

2�±
c (�N, D) =

(
ξccDc + ξscDs ± ξcc�Nc − ξcs�Ns

2 det ξ̂

)2

+ 2N±
c

2�±
s (�N, D) =

(
ξcsDc + ξssDs ± ξcc�Ns − ξsc�Nc

2 det ξ̂

)2

+ 2N±
s .

Let us explain the symbols used. The entries of the vector �N are integers �Nc,�Ns, which
denote the change of charges and down spins with respect to the ground state. The N±

c,s denote
non-negative integers, and D = (Dc,Ds) depends on the parity of �Nc,s:

Dc = 1
2 (�Nc + �Ns)mod 1 (88)

Ds = 1
2�Nc mod 1. (89)

Therefore Dc,Ds are either integers are half-odd integers. The matrix ξ̂ has entries

ξ̂ :=
(

ξcc ξcs

ξsc ξss

)
:=

(
Zcc(B) Zcs(Q)

Zsc(B) Zss(Q)

)
. (90)
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These entries are obtained from the following system of linear integral equations

Zcc(k) = 1 +
∫ B

−B

Zcs(v)a1(sin k − v) dv

Zcs(v) =
∫ Q

−Q

cos ka1(v − sin k)Zcc(k) dk −
∫ B

−B

a2(v − v′)Zcs(v
′) dv′.

Zsc(k) =
∫ B

−B

a1(sin k − v)Zss(v) dv

Zss(v) = 1 +
∫ Q

−Q

cos ka1(v − sin k)Zsc(k) dk −
∫ B

−B

a2(v − v′)Zss(v
′) dv′.

The integration kernels are given by equation (31). The integration boundaries B,Q are
obtained from the linear integral equations for the root densities, equations (29) and (30).

Let us now focus onto 〈Ô(τ, x)Ô(0, 0)〉 with Ô = n, sz, respectively. Since the operator
Ô does neither change the particle density nor the magnetization, we have �Nc = 0 = �Ns.
Consequently, according to (88) and (89), Dc = 0,±1,±2, . . . ,Ds = 0,±1,±2, . . . . Then

〈Ô(τ, x)Ô(0, 0)〉 − 〈Ô〉2

= A1 cos(2kF↑x)

(vcτ + ix)(ξcc−ξsc)2
(vcτ − ix)(ξcc−ξsc)2

(vsτ + ix)(ξcs−ξss)2
(vsτ − ix)(ξcs−ξss)2

+
A2 cos(2kF↓x)

(vcτ + ix)ξ
2
sc(vcτ − ix)ξ

2
sc(vsτ + ix)ξ

2
ss(vsτ − ix)ξ

2
ss

+
A3 cos 2(kF↑ + kF↓)x

(vcτ + ix)ξ
2
cc(vcτ − ix)ξ

2
cc(vsτ + ix)ξ

2
cs(vsτ − ix)ξ

2
cs

+
A4 cos 2(kF↑ + 2kF↓)x

(vcτ + ix)(ξcc+ξsc)2
(vcτ − ix)(ξcc+ξsc)2

(vsτ + ix)(ξcs+ξss)2
(vsτ − ix)(ξcs+ξss)2

+ A5
x2 − v2

c τ
2(

x2 + v2
c τ

2
)2 + A6

x2 − v2
s τ

2(
x2 + v2

s τ
2
)2 + · · · , (91)

where the amplitudes Ai are different for the density–density and the longitudinal spin–
spin correlation function. The oscillating terms on the right-hand side correspond to
D = (±1,∓1), (0,±1), (±1, 0), (±1,±1) with N = (

N+
c , N−

c , N+
s , N−

s

) = 0 and the non-
oscillating to N = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) with D = 0.

4.2. One-point functions in the open system

From the two-point function 〈Ô(z1, z̄1)Ô(z2, z̄2)〉 in equation (91) with z = vc,sτ + ix we can
read of the one-point correlation function in the presence of an open boundary by considering
it as a function of (z1, z2) only and identifying z2 = z̄1 afterwards [34].

〈Ô(x)〉 − 〈Ô(x)〉x→∞ = A1
cos(2kF↑x + φ1)

(2x)(ξcc−ξsc)2
(2x)(ξcs−ξss)2 + A2

cos(2kF↓x + φ2)

(2x)ξ
2
sc(2x)ξ

2
ss

+ A3
cos[2(kF↑ + kF↓)x + φ3]

(2x)ξ
2
cc (2x)ξ

2
cs

+ A4
cos[2(kF↑ + 2kF↓)x + φ4]

(2x)(ξcc+ξsc)2
(2x)(ξcs+ξss)2 +

A5 + A6

(2x)2
, (92)

with unknown amplitudes Ai and phases φi where x now denotes the distance from the
boundary.
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By the usual mapping of the complex plane onto a cylinder we can generalize (92) to
finite temperatures:

〈Ô(x)〉 − 〈Ô(x)〉x→∞ = A1
cos(2kF↑x + φ1)(

vc
πT

sinh 2πT x
vc

)(ξcc−ξsc)2(
vs
πT

sinh 2πT x
vs

)(ξcs−ξss)2

+ A2
cos(2kF↓x + φ2)(

vc
πT

sinh 2πT x
vc

)ξ 2
sc
(

vs
πT

sinh 2πT x
vs

)ξ 2
ss

+ A3
cos

[
2(kF↑ + kF↓)x + φ3

](
vc
πT

sinh 2πT x
vc

)ξ 2
cc
(

vs
πT

sinh 2πT x
vs

)ξ 2
cs

+ A4
cos[2(kF↑ + 2kF↓)x + φ4](

vc
πT

sinh 2πT x
vc

)(ξcc+ξsc)2(
vs
πT

sinh 2πT x
vs

)(ξcs+ξss)2 +
A5(

vc
πT

sinh 2πT x
vc

)2 +
A6(

vs
πT

sinh 2πT x
vs

)2 .

(93)

The magnetic susceptibility at zero field is obtained by taking the derivative with respect
to h:5 here kF↑ = π(n + 2s)/2a, kF↓ = π(n − 2s)/2a and s = χ0h for |h| 
 1 (without
taking account of the logarithmic corrections). Furthermore, the exponents and the amplitudes
depend on h. However, we neglect this h-dependence here since it gives rise to higher-order
contributions in χ(x). In the h = 0-case,

ξcc =: ξ, ξss = 1/
√

2, ξcs = 0, ξsc = ξ/2,

leading to

χ(x) − χ0 = 2πχ0x
−A1 sin(πnx + φ1) + A2 sin(πnx + φ2)

(2x)ξ
2/4(2x)1/2

+ 2πχ0x
A4 sin(3πnx + φ4)

(2x)9ξ 2/4(2x)1/2
.

(94)

Note that the kF↑ + kF↓-term in equation (92) is h-independent in lowest order and therefore
does not contribute to the susceptibility.

Again we generalize this to finite temperatures:

χ(x) − χ0 = 2πχ0x
−A1 sin(πnx + φ1) + A2 sin(πnx + φ2)(

vc
πT

sinh 2πT x
vc

)ξ 2/4( vs
πT

sinh 2πT x
vs

)1/2

+ 2πχ0x
A4 sin(3πnx + φ4)(

vc
πT

sinh 2πT x
vc

)9ξ 2/4( vs
πT

sinh 2πT x
vs

)1/2
. (95)

Note that we have ignored logarithmic corrections to the algebraic decay of the correlation
functions throughout this section. Multiplicative logarithmic corrections will be present due
to the marginal operator in (9). These corrections have been discussed for the leading term in
(91) in [37].

4.3. Numerical results

To calculate numerically the local magnetization sz(x) and susceptibility χ(x) at finite
temperatures we use the density-matrix renormalization group applied to transfer matrices
(TMRG). The advantage of this method compared to quantum Monte Carlo algorithms is
that the thermodynamic limit can be performed exactly. This is particularly helpful in the
present situation where we want to study boundary effects, i.e., corrections which are of order
1/L compared to bulk quantities. The method is explained in detail in [16, 38, 39]. Here we
concentrate on the local magnetization for h �= 0 and on the local susceptibility for h = 0, both
times for generic filling n �= 1. In figure 7 TMRG data for 〈sz(x)〉 are shown in comparison

5 In the same way the compressibility can be obtained by taking derivatives with respect to a chemical potential µ.
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Figure 7. TMRG data (black circles) for the local magnetization 〈sz(x)〉 where u = 1.0, T =
0.131, s = 0.037 and n = 0.886. In comparison the field theory result (93) is shown (blue squares)
where the amplitudes and phases have been determined by a fit.
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Figure 8. TMRG data (black circles) for the local susceptibility χ(x) where u = 1.0, T =
0.131, s = 0.0 and n = 0.886. In comparison the field theory result (95) is shown (blue squares)
where the amplitudes and phases have been determined by a fit.

to the field theory result (93). Here the exponents and velocities have been determined
exactly by the Bethe ansatz solutions equations (90) and (34) whereas the amplitudes and
phases have been used as fitting parameters. The agreement is very good. In particular,
the exponential decay of the correlation function is correctly described by the exponents and
velocities obtained by Bethe ansatz. The surprisingly rich structure of 〈sz(x)〉 is caused by a
competition between the first three terms in (93) which oscillate with different wave vectors
but have similar correlation lengths given by ξ1 = 1.906, ξ2 = 1.903 and ξ3 = 1.708 (the
correlation lengths ξi should not be confused with the matrix ξ̂ in (90).

In figure 8, the local susceptibility for the same set of parameters as in figure 7 but zero
magnetization is shown. The TMRG data are again compared to the field theory result (95)
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and good agreement is found. Here only the first term of (95) has been taken into account
because the correlation length belonging to the second term is small compared to that of the
first one.

5. Conclusions

We studied the low-energy thermodynamic and ground-state properties of the one-dimensional
Hubbard model with open ends. In particular, we concentrated on the bulk and boundary parts
of the magnetic susceptibility. On the basis of the low-energy effective theory for this model,
we argued that the functional form of χbulk,B(h, T = 0) and χbulk,B(h = 0, T ) is universal, i.e.,
does not depend on filling n or interaction strength u. For the bulk susceptibility only the zero
temperature and zero-field value χ0 = (2πvs)

−1 depends on n, u via the spin-wave velocity
vs as does the scale E0 appearing in the logarithms. For E 
 E0 with E = T , h, however,
the scale is not important and the bulk susceptibility becomes

χbulk = 1

2πvs

(
1 − 1

2 ln E
− ln|ln E|

ln2 E

)
.

For the boundary part we even find that the result for T = 0, h 
 h0

χB = 1

4h ln2 h

(
1 +

ln|ln h|
ln h

)
as well as the result for h = 0, T 
 T0

χB = − 1

12T ln T

(
1 +

ln|ln T |
2 ln T

)
are completely universal. In particular, they are identical to the results obtained for the
Heisenberg model [13, 14]. The universal behaviour of χB at low energies has nothing to
do with the special properties making the Hubbard model integrable. Instead, the universal
behaviour will hold for any system whose low-energy effective theory is identical to that for
the Hubbard model described in section 2. Therefore even in a generic itinerant electron
system, non-magnetic impurities or structural defects can give rise to a Curie-like contribution
to the magnetic susceptibility. This has profound consequences for experiments on such
systems, where a Curie term in the susceptibility is often assumed to be directly related to
the concentration of magnetic impurities in the sample. In the light of the results presented
here a more sophisticated analysis is necessary. In particular, the temperature dependence of
the Curie constant has to be analysed carefully—in the case of a boundary considered here
the Curie constant will show a logarithmic dependence on temperature. In addition, it might
be useful to investigate if the Curie contribution can be reduced by annealing as one would
expect if it is caused by structural defects.

On the basis of the Bethe ansatz solution for the Hubbard model at zero temperature,
we have been able to calculate χbulk exactly beyond the limit h 
 h0 by determining the
scale h0 for arbitrary filling. In addition, the exact solution has confirmed that the bulk and
boundary parts show indeed the universal functional dependence on magnetic field which has
been obtained by the low-energy effective theory.

For the Friedel oscillations in magnetization and density caused by the open boundaries,
we have derived an asymptotic expansion by making use of conformal invariance. We have also
calculated the local susceptibility near the boundary which is a quantity directly measurable in
nuclear magnetic resonance Knight shift experiments. We confirmed our results by comparing
with numerical data obtained by the density-matrix renormalization group applied to transfer
matrices.
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Appendix A. Small-u expansion

The Bethe ansatz equations for a finite system are expanded with respect to the coupling
constant at small couplings, in analogy to the model of an interacting Fermi gas [40]. Before
turning to the open boundary case, we first perform this expansion for periodic boundary
conditions. The comparison with open boundary conditions yields the surface energy in this
approximation.

A.1. Periodic boundary conditions

The energy eigenvalues are given by

Epbc = −2
N∑

j=1

cos kj (A.1)

where the kj are obtained through

eikj L =
M↓∏
l=1

λl − sin kj − iu

λl − sin kj − iu
, j = 1, . . . , N (A.2)

N∏
j=1

λl − sin kj + iu

λl − sin kj − iu
=

M↓∏
m=1,m�=l

λl − λm + 2iu

λl − λm − 2iu
, l = 1, . . . ,M↓. (A.3)

For u = 0, 2M↓-many of the k
(0)
j are grouped in pairs at 2πl/L, l = 1, . . . , M↓, and the

M↓-many λ
(0)
l s lie at sin(2πl/L). The rest of the k

(0)
j s (namely N −2M↓ many) are not paired,

they are at ±2πj/L, j = −(N − M↓ − 1)/2, . . . ,−(M↓ + 1)/2. We make the following
ansatz, distinguishing between paired (unpaired) momenta k

(p)

j

(
k

(u)
j

)
:

k
(p)

j = k
(p,0)

j ± βj + δ
(p)

j k
(u)
j = k

(u,0)
j + δ

(u)
j

(A.4)

λl = λ
(0)
l + εl. (A.5)

This ansatz is motivated by evaluating numerically the BA equations (A.2) and (A.3) and it is
justified a posteriori by observing that the quantities δ

(u,p)

j , βj , εl can be obtained in a closed
form. Equation (A.4) means that two paired momenta are centred around their ‘centre of
mass’ k

(p,0)

j + δ
(p)

j . It can be verified that εl = δ
(p)

j only for N = 2M↓ (no magnetization).
Expanding the BA equations (A.2) and (A.3) and comparing coefficients of the imaginary and
real parts yields

β2
j = 2

u

L
cos k

(p,0)

j (A.6)

δ
(p)

j = 2
u

L
cos k

(p,0)

j

∑
l �=j

1

λ
(0)
j − λ

(0)
l

+
1

2

∑
l

1

λ
(0)
j − sin k

(u,0)
l

 − u

L

sin k
(0)
j

cos k
(0)
j

(A.7)
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δ
(u)
j = −2

u

L
cos k

(u,0)
j

∑
l

1

λ
(0)
l − sin k

(u,0)
l

. (A.8)

Note that β2
j may be positive or negative, depending on the value of cos k

(0)
j . The quantity

εl in (A.5) may be obtained similarly; however, it will be of no further importance for our
purposes. Inserting (A.6)–(A.8) into (A.1) results in

Epbc = −4
sin π

L
N
2 cos π

L
S

sin π
2

+
u

L
(N2 − 4S2), (A.9)

where S = N
2 − M↓.

Now, with n := N/L, s =: S/L,

epbc = − 4

π
sin

πn

2
cos πs + u(n2 − 4s2) − 4π

6L2
sin

πn

2
cos πs. (A.10)

At s = 0 (that is, for zero magnetic field), we obtained the charge and spin velocities at small
u from the low-energy effective Hamiltonian in section 2,

vc,s = 2 sin
πn

2
± 2u

π
.

This provides a consistency check on the leading finite-size correction of the ground-state
energy, as obtained from conformal field theory [41]

epbc := Epbc

L
= e(∞) − π

6L2
(vc + vs). (A.11)

At finite magnetic field

h = −∂sepbc = −4 sin
πn

2
sin πs + 2us, (A.12)

the susceptibility is derived from equation (A.10),

χbulk(u → 0, h) = 1

4π sin πn
2 cos πs

(
1 +

2u

π sin πn
2 cos πs

)
. (A.13)

It is important to note that equation (A.13) has been derived at finite s, in the limit of vanishing
u. In the limit of small fields, s ∝ h, and thus the small-field expansion of (A.13) reads

χbulk(u → 0, h > 0) = 1

2πvF
+

2u

π2v2
F

, (A.14)

with s = s(h). The order of the limits is important here: the small-coupling limit has been
taken before the small h-limit. That is, equation (A.14) is valid at small but still finite fields,
where the field-dependent terms have been neglected (in the main part (cf equation (84), a
lower bound on the field is given in terms of the scale h0, namely h � 1/h0). These singular
limits are due to the non-analytic behaviour of χbulk as a function of the magnetic field in the
thermodynamic limit; cf equation (17).

The result for χbulk(h → 0, u > 0), that is, with interchanged limits compared to
equation (A.14), is obtained from the low-energy effective Hamiltonian given in section 2:

χbulk(h → 0, u > 0) ≡ χ0 = 1

2πvs

= 1

2πvF
+

u

π2v2
F

(A.15)

where the result for vs, given in equation (13), has been inserted. The origin of the difference
between (A.14) and (A.15) is clarified in section 3.3.
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A.2. Open boundary conditions

For open boundary conditions, the BA equations are given in (24) and (25). The remarks from
A.1 apply similarly to this case, with the modification that all roots are on one half of the real
axis. Furthermore, the above expansion procedure can be repeated with the results

β2
j = u

L + 1
cos k

(p,0)

j (A.16)

δ
(p)

j = u

L + 1
cos k

(p,0)

j

∑
l �=j

1

λ
(0)
j − λ

(0)
l

+
1

2

∑
l

1

λ
(0)
j − sin k

(u,0)
l

 − u

2(L + 1)

sin k
(0)
j

cos k
(0)
j

(A.17)

δ
(u)
j = − u

L + 1
cos k

(u,0)
j

∑
l

1

λ
(0)
l − sin k

(u,0)
l

. (A.18)

Here the sums run over the symmetrized sets of BA-numbers. We now obtain the energy

Eobc = −2
sin π(N+1)

2(L+1)
cos πS

L+1

sin π
2(L+1)

+ 2 +
u

L + 1
(N2 − 4S2 + N − 2S). (A.19)

Expanding (A.19) in powers of 1/L yields the boundary contribution to the energy in this
weak-coupling approximation

eB = sin
nπ

2

(
−4s sin sπ − 4

π
cos sπ

)
+ 2(n − 1) cos sπ cos

nπ

2
+ 2 + u(2s − n)(2s + n − 1). (A.20)

If the boundary susceptibility is derived from this expression as in the previous section,
one would obtain a constant depending on n and u only. This result cannot be related to
equation (17), showing again the non-commutativity of diverse limits at u �= 0.

Appendix B. Free fermions

In this section we give χbulk, χB for free fermions (u = 0) in the low-energy limit. The
corresponding quantities are marked by an index (ff).

At T = 0, χ(ff)(h) is directly obtained from equations (A.10) (the bulk part) and (A.20),
both at u = 0, with the magnetic field given by h = −∂se. In the small-field limit, one obtains

χ
(ff)
bulk(h) = 1

2πvF
+

1

16πv3
F

h2 + O(h4) (B.1)

χ
(ff)
B (h) = 1

2πvF
+

(n − 1) cos nπ
2

2v2
F

+
h2

16π

(
1

v3
F

+
π(n − 1) cos πn

2

v4
F

)
+ O(h4). (B.2)

Note that χ
(ff)
bulk(h) = χ

(ff)
B (h) only for n = 1.

To calculate the susceptibility at finite temperatures, one starts with the free energy per
lattice site f (ff),

−βf (ff) = 1

L

L∑
j=1

[
ln

(
1 + exp

[
−β

(
−2 cos

πj

L + 1
− µ − h/2

)])
+ (h ↔ −h)

]
, (B.3)
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where the chemical potential µ is to be determined from n = −∂µf (ff). Applying the Euler–
MacLaurin formula to equation (B.3) yields

− βf (ff) =
(

1 +
1

L

)
1

π

∫ π

0
ln(1 + e−β(−2 cos k−µ−h/2)) dk

− 1

2L
[ln(1 + e−β(−2−µ−h/2))(1 + e−β(2−µ−h/2))] + (h ↔ −h). (B.4)

In the T = 0 limit, the results equation (B.1) and (B.2) are recovered. By performing a
saddle-point approximation around the two Fermi points in the integral in (B.4), one obtains
the first T-dependent correction to the zero-field susceptibility,

χ
(ff)
bulk(T ) = 1

2πvF
+

[
2π

3v5
F

(
1 − 1

4
v2

F

)
+

π

12v3
F

]
T 2 + O(T 4) (B.5)

χ
(ff)
B (T ) = 1

2πvF
+

(n − 1) cos nπ
2

2v2
F

+

[
2π

3v5
F

(
1 − 1

4
v2

F

)
+

π

12v3
F

+
π2

3
(n − 1)(7 + 3 cos nπ)

cos nπ

v6
F

+
π2(n − 1) cos nπ

2

3v4
F

]
T 2 + O(T 4). (B.6)

As in the T = 0 case, χ
(ff)
bulk = χ

(ff)
B for n = 1 only.
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